$$(i-\Pr_2 N)_2 PH \rightarrow "i-\Pr_2 NP" + i-\Pr_2 NH$$
 (3)

Complexation of $(i-Pr_2N)_2PH$ to a labile cobalt carbonyl system of an as yet unknown nature undoubtedly facilitates its conversion to the phosphinidene i-Pr₂NP, probably through stabilization of the latter through bonding to the Co₃ triangle in (μ_3 -*i*-Pr₂NP)- $Co_3(CO)_9$. Also, related μ_3 -phosphinidene derivatives XPCo₃- $(CO)_9$ (I: Y = Et₂N, Ph, t-Bu) have been obtained by Markó and Marko¹³ from reactions of $Co_2(CO)_8$ with XPCl₂. Such reactions could involve dehalogenation by Co₂(CO)₈ or Co(CO)₄⁻ of XPCl₂ to the phosphinidene "XP" after the XPCl₂ unit is appropriately complexed with a cobalt carbonyl unit.

(13) Markó, L.; Markó, B. Inorg. Chim. Acta 1975, 14, L39.

Acknowledgment. We are indebted to the Air Force Office of Scientific Research for partial support of this work under Grant AFOSR-84-0050. We are also indebted to Prof. L. F. Dahl of the University of Wisconsin in Madison for calling our attention to Dr. R. C. Ryan's unpublished work in his laboratory and providing us with a copy of the relevant pages of Dr. Ryan's dissertation.8

Registry No. (*i*-Pr₂N)₂PMn₂(CO)₈H, 94423-73-1; (*i*-Pr₂NPCl)-Mn₂(CO)₈H, 94423-75-3; (i-Pr₂NPBr)Mn₂(CO)₈H, 94423-76-4; i- $\begin{array}{l} Pr_2NPCo_3(CO)_9, \ 94423\text{-}74\text{-}2; \ Mn_2(CO)_{10}, \ 10170\text{-}69\text{-}1; \ Co_2(CO)_8, \\ 10210\text{-}68\text{-}1; \ (i\text{-}Pr_2N)_2PH, \ 86660\text{-}77\text{-}7; \ HCl, \ 7647\text{-}01\text{-}0; \ HBr, \ 10035\text{-} \end{array}$ 10-6; Mn, 7439-96-5

Supplementary Material Available: Listings of anisotropic thermal parameters for both compounds and hydrogen positional parameters for (i-Pr₂N)₂PMn₂(CO)₈H (3 pages). Ordering information is given on any current masthead page.

Contribution from the Departments of Chemistry, University of Georgia, Athens, Georgia 30602, and Oklahoma State University, Stillwater, Oklahoma 74078

Dialkylamino Phosphorus Metal Carbonyls. 3. Heterobimetallic µ-Phosphido Derivatives from Reactions of (Diisopropylamino)halophosphine Metal Carbonyl Complexes with Sodium Cyclopentadienyldicarbonylferrate¹⁻³

R. B. King, $*^{\dagger}$ W.-K. Fu, † and E. M. Holt[‡]

Received October 11, 1985

Reactions of *i*-Pr₂NP(H)XM(CO)₅ (X = Br, M = Cr; X = Cl, M = Mo, W) and *i*-Pr₂NP(H)ClMn(CO)₂Cp with NaFe(CO)₂Cp give relatively good yields of deep orange CpFe(CO)₂PH(N-i-Pr₂)M(CO)₅ and deep red CpFe(CO)₂PH(N-i-Pr₂)Mn(CO)₂Cp, respectively, which do not contain metal-metal bonds. Photolyses of $CpFe(CO)_2PH(N-i-Pr_2)M(CO)_5$ (M = Cr, W) and CpFe(CO)₂PH(N-*i*-Pr₂)Mn(CO)₂Cp in pentane or cyclohexane solution result in rapid decarbonylation to give black CpFeM- $(CO)_6PH(N-i-Pr_2)$ (M = Cr, W) and Cp₂FeMn(CO)₃PH(N-i-Pr₂), respectively. X-ray diffraction of CpFeM(CO)₆PH(N-i-Pr₂) (space group P2₁/c, Z = 4; M = Cr, a = 14.362 (5) Å, b = 7.733 (2) Å, c = 19.244 (8) Å, β = 104.00 (3)°; M = W, a = 14.491 (5) Å, b = 7.808 (2) Å, c = 19.456 (8) Å, $\beta = 103.17$ (3)°) indicates structures in which a heteronuclear Fe-M bond is bridged by both a carbonyl group and a *i*- Pr_2NPH phosphido group. A similar structure is postulated for $Cp_2FeMn(CO)_3PH(N-i-Pr_2)$ on the basis of the observation of two terminal and one bridging $\nu(CO)$ frequencies. Reactions of CpFe(CO)₂PH(N-i-Pr₂)M(CO)₅ (M = Cr, Mo, W) with HX (X = Cl, Br) result in cleavage of the P-N bond to give the corresponding CpFe(CO)₂PHXM(CO)₅ derivatives (X = Cl, Br; M = Cr, Mo, W). Reactions of $CpFe(CO)_2PHClM(CO)_5$ (M = Cr, W) and $CpFe(CO)_2PH(N-i-1)_2PH(N$ Pr₂)Mn(CO)₂Cp with boiling methanol give the methoxyphosphorus derivatives CpFe(CO)₂PH(OMe)M(CO)₅ and CpFe-(CO)₂PH(OMe)Mn(CO)₂Cp, respectively.

Introduction

The (diisopropylamino)halophosphine metal carbonyl complexes i-Pr₂NP(H)XM(CO)₅ (X = Cl, Br; M = Cr, Mo, W) and i-Pr₂NP(H)ClMn(CO)₂Cp are readily available by selective cleavage of one of the phosphorus-nitrogen bonds in the corresponding (i-Pr₂N)₂PH metal carbonyl derivatives with the corresponding hydrogen halide, HX.⁴ The phosphorus-halogen bonds in these (diisopropylamino)halophosphine metal carbonyl complexes are potentially reactive toward nucleophiles including transition-metal nucleophiles⁵ that provide possible routes to bimetallic derivatives. This paper describes reactions of the above *i*-Pr₂NP(H)X metal carbonyl complexes with the highly nucleophilic metal carbonyl anion $C_5H_5Fe(CO)_2^-$ to give novel heterobimetallic complexes that may be regarded as metal carbonyl derivatives of the trivalent phosphorus ligand CpFe(CO)₂P- $(H)(N-i-Pr_2)$ in which the phosphorus atom is bonded to hydrogen, nitrogen, and iron. Such complexes do not have direct metal-metal bonds but undergo facile photochemical loss of one carbonyl group to give metal-metal-bonded μ -phosphido derivatives according to the general scheme $(X = H, Y = N - i - Pr_2)$

This paper also reports the X-ray determinations of the structures of two of these decarbonylation products of the type CpFeM- $(CO)_6PH(N-i-Pr_2)$ (M = Cr, W). Early examples of pairs of µ-diphenylphosphido heterobimetallic complexes related by decarbonylation as in eq 1 ($X = Y = C_6H_5$) were prepared by Yasufuku and Yamazaki⁶ using completely different methods.

[†] University of Georgia.

⁽¹⁾ Part 2: King, R. B.; Fu, W.-K.; Holt, E. M. Inorg. Chem., preceding paper in this issue.

For a preliminary communication of this work see: King, R. B.; Fu, W.-K.; Holt, E. M. Inorg. Chem. 1985, 24, 3094.

⁽³⁾ Portions of this work were presented at the 12th International Conference on Organometallic Chemistry, Vienna, Austria, Sept 1985, and the 190th National Meeting of the American Chemical Society, Chicago, IL, Sept 1985.
(4) King, R. B.; Fu, W.-K. *Inorg. Chem.*, preceding paper in this issue.
(5) King, R. B. Acc. Chem. Res. 1970, 3, 417.

[†]Oklahoma State University.

Table I. New Heterobimetallic Complexes

						anai.		
complex	yield, %	color	mp, °C		% C	% H	% N or X	
	(4) Iron-Chromium	Derivatives					
$CpFe(CO)_{2}PH(N-i-Pr_{2})Cr(CO)_{5}$	73	orange	145 dec	calcd	43.1	4.0	2.8 (N)	
		•		found	43.0	4.0	2.6 (N)	
$CpFeCr(CO)_6PH(N-i-Pr_2)$	53	black	110 dec	calcd	43.2	4.2	3.0 (N)	
				found	42.7	4.2	2.8 (N)	
CpFe(CO) ₂ PHClCr(CO) ₅	67	brown	74 dec	calcd	33.0	1.4	8.1 (Cl)	
	7		. .	found	32.7	1.4	7.8 (Cl)	
CpFe(CO) ₂ PHBrCr(CO) ₅	67	orange	85	calcd	30.0	1.2	16.6 (Br)	
	04	nallanı	100	round	30.3	1.2	10.0 (Br)	
$Cpre(CO)_2 PH(OMe)Cr(CO)_5$	04	yenow	100	found	30.1	2.1		
				Touna	54.0	2.1		
	(B)	Iron-Molybdenur	n Derivatives					
CpFe(CO) ₂ PH(N- <i>i</i> -Pr ₂)Mo(CO) ₅	66	yellow-brown	100-105 dec	calcd	39.7	3.7	2.6 (N)	
-				found	39.5	3.8	2.6 (N)	
CpFe(CO) ₂ PHClMo(CO) ₅	39	brown	75 dec	calcd	30.0	1.3	7.4 (Cl)	
				found	30.8	1.6	6.5 (Cl)	
CpFe(CO) ₂ PHBrMo(CO) ₅	41	orange	85	calcd	27.4	1.1	15.2 (Br)	
				found	27.5	1.4	15.2 (Br)	
	(C) Iron-Tungsten	Derivatives					
$CpFe(CO)_2PH(N-i-Pr_2)W(CO)_5$	69	brown	120 dec	calcd	34.1	3.2	2.2 (N)	
				found	34.7	3.2	2.0 (N)	
$CpFeW(CO)_6PH(N-i-Pr_2)$	52	black	105-110 dec	calcd	33.7	3.3	2.3 (N)	
	-			found	33.7	3.4	2.1 (N)	
$CpFe(CO)_2PHClW(CO)_5$	58	brown	80 dec	calcd	25.3	1.1	6.2 (Cl)	
				found	24.2	1.3	6.5 (Cl)	
$CpFe(CO)_2PHBrW(CO)_5$	43	brown	97 dec	calcd	23.5	1.0	13.0 (Br)	
	(1		88.00	tound	23.9	1.1	13.6 (Br)	
$CpFe(CO)_2PH(OMe)w(CO)_5$	01	yellow	88-90	calco	27.7	1.0		
				Iound	27.5	1./		
	(E) Iron-Manganese	Derivatives					
CpFe(CO) ₂ PH(N- <i>i</i> -Pr ₂)Mn(CO) ₂ Cp	63	deep red	140 dec	calcd	49.5	5.2	2.9 (N)	
		-		found	49.4	5.2	2.8 (N)	
$CpFeMn(CO)_{3}PH(N-i-Pr_{2})$	21	black	100 dec	calcd	49.9	5.5	3.1 (N)	
				found	49.9	5.5	2.8 (N)	
$CpFe(CO)_2PH(OMe)Mn(CO)_2Cp$	57	red	125 dec	calcd	43.3	3.4		
				found	43.5	3.5		

The new complexes reported in this paper are of interest since unlike previously reported heterobimetallic μ -phosphido complexes they contain reactive phosphorus-nitrogen and phosphorus-hydrogen bonds. Examples of cleavage of the phosphorus-nitrogen bonds in these new heterobimetallic derivatives with hydrogen halides are given in this paper; such cleavage reactions lead to the first species having M-PHX-M' structural units.

Experimental Section

The general techniques for microanalyses (Table I), melting points (Table I), infrared ν (CO) spectra (Table II), NMR spectra (Table III), solvent purification, and inert-atmosphere manipulations are the same as those given in the first paper of this series.⁴ The preparations of the *i*-Pr₂NP(H)X metal carbonyl derivatives are also given in the first paper of this series.⁴ The sodium salt NaFe(CO)₂Cp was prepared from [CpFe(CO)₂]₂ and 1% sodium amalgam in tetrahydrofuran by the standard method.⁷

Preparation of CpFe(CO)₂PH(N-*i*-Pr₂)M(CO)₅ (M = Cr, Mo, W). A yellow-orange solution of NaFe(CO)₂Cp prepared in 300 mL of tetrahydrofuran from 1.3 g (3.8 mmol) of $[CpFe(CO)_2]_2$ and excess 1% sodium amalgam and freed from excess mercury was treated at -78 °C with a solution of 3.0 g (7.4 mmol) of *i*-Pr₂NP(H)BrCr(CO)₅. After the mixture was stirred for 10 h at ambient temperature, solvent was removed at 25 °C (25 mm). The resulting orange-brown residue was extracted with 500 mL of pentane. The pentane extract was concentrated under a vacuum and cooled overnight in a -10 °C freezer to give 2.7 g (73% yield) of orange air-stable CpFe(CO)₂PH(N-*i*-Pr₂)Cr(CO)₅, mp 145 °C dec.

Analogous procedures were used to prepare $CpFe(CO)_2PH(N-i-Pr_2)M(CO)_5$ (M = Mo, W) from NaFe(CO)_2Cp and *i*-Pr_2NP(H)ClM-(CO)_5 (M = Mo, W) on a 10-15-mmol scale.

Table II. Infrared $\nu(CO)$ Frequencies of the New Heterobimetallic Complexes

complex	$\nu(CO),^{a} cm^{-1}$
$\overline{\text{CpFe(CO)}_{2}\text{PH}(\text{N-}i\text{-}\text{Pr}_{2})\text{Cr(CO)}_{5}}$	2040 w, 2005 m, 1970 s, 1955
/	w, 1935 s, 1920 s
CpFe(CO) ₂ PHClCr(CO) ₅	2068 w, 2033 m, 2002 m,
	1958 s, 1938 s
CpFe(CO) ₂ PHBrCr(CO) ₅	2058 w, 2033 m, 2002 m,
	1957 s, 1946 s, 1935 s
Cpre(CO) ₂ rH(OMe)Cr(CO) ₅	2036 w, 2026 m, 1987 m,
$C_{p} Fe(CO) \cdot PH(N_{i} \cdot Pr_{i}) M_{O}(CO)$	$2056 \le 2006 \le 1973 \le$
	1939 s 1931 s
CpFe(CO)_PHClMo(CO)	2068 w. 2033 m. 2001 m.
	1951 s. 1939 s
CpFe(CO) ₂ PHBrMo(CO) ₅	2068 w, 2036 m, 2002 m,
	1958 s, 1938 s
$CpFe(CO)_2PH(N-i-Pr_2)W(CO)_5$	2060 w, 2010 m, 1970 m,
	1945 s, 1935 s, 1920 s
$CpFe(CO)_2PHClW(CO)_5$	2069 w, 2038 m, 2003 m,
	1954 s, 1948 s, 1933 s
$CpFe(CO)_2PHBrW(CO)_5$	2069 w, 2037 m, 2002 m,
CrEe(CO) BH(OMe)W(CO)	194/s, $1941s$, $1932s2064w - 2024w - 1080w$
$Cpre(CO)_2rH(OMe) W(CO)_5$	1039 ch 1029 c
$CpFe(CO)_{2}PH(N-i-Pr_{2})Mn(CO)_{2}Cp$	2004 s. 1956 s. 1929 s. 1864 s
CpFe(CO) ₂ PH(OMe)Mn(CO) ₂ Cp	2023 s, 1976 s, 1926 s, 1860 s
$Cp_2FeMn(CO)_3PH(N-i-Pr_2)$	1947 s, 1889 m, 1758 ^b m
$CpFeCr(CO)_6PH(N-i-Pr_2)$	2031 m, 1961 s, 1959 s, 1926
	s, 1811 ^b m
$CpFeW(CO)_6PH(N-i-Pr_2)$	2047 m, 1968 s, 1952 s, 1931
	s. 1810° vw

^aThese frequencies were measured in pentane or hexane solution. ^bBridging ν (CO) frequency.

⁽⁶⁾ Yasufuku, K.; Yamazaki, H. J. Organomet. Chem. 1971, 28, 415.
(7) King, R. B. Organometallic Syntheses; Academic: New York, 1965; Vol. I.

Table III. Proton and Phosphorus-31 NMR Spectra of the Heterobimetallic Complexes

	³¹ F	NMR	¹ H NMR ^a			
complex	$\delta(\mathbf{P})$	¹ J(P-H)	$\overline{\delta(P-H)}$	δ(C-H)	δ(CH ₃)	$\delta(C_5H_5)$
$CpFe(CO)_2PH(N-i-Pr_2)Cr(CO)_5$	62.6	292	7.31 d	3.32 sp (7)	1.23 d (7)	5.04 d (2)
CpFe(CO) ₂ PHClCr(CO) ₅	169.8	282	7.50 d			5.20 d (2)
$CpFe(CO)_{2}PHBrCr(CO)_{3}$	149.5	273	6.71 d			5.21 d (2)
CpFe(CO) ₂ PH(OMe)Cr(CO) ₅	208.4	273	7.77 d		3.59 d (13) ^b	5.12 d (2)
CpFe(CO) ₂ PH(N- <i>i</i> -Pr ₂)Mo(CO) ₅	36.7	291	7.36 d	3.32 sp (7)	1.20 d (7)	4.94 d (2)
CpFe(CO) ₂ PHClMo(CO) ₅	133.3	273	7.57 d			5.16 d (2)
CpFe(CO) ₂ PHBrMo(CO) ₅	109.8	269	6.64 d			5.18 d (2)
$CpFe(CO)_{2}PH(N-i-Pr_{2})W(CO)_{5}^{c}$	6.7	300	7.57 d	3.35 sp (7)	1.22 d (7)	4.98 d (2)
CpFe(CO) ₂ PHClW(CO) ₅	89.9	283	7.72 d			5.17 d (2)
CpFe(CO) ₂ PHBrW(CO) ₅	63.7	284	6.82 d			5.19 d (2)
CpFe(CO) ₂ PH(OMe)W(CO) ₅	145.5	278	8.05 d		3.56 d (13) ^b	5.13 d (2)
$CpFe(CO)_2PH(N-i-Pr_2)Mn(CO)_2Cp$	98.5	306	7.68 d	3.46 br	1.20 br	4.92 s, 4.50 s
$CpFe(CO)_2PH(OMe)Mn(CO)_2Cp$	230.8	283	8.29 d		3.50 d (12) ^b	5.03 s, 4.56 s
$CpFeCr(CO)_6PH(N-i-Pr_2)$	206.3	360	9.2 d	3.45 m (7)	1.40 d (7), 1.37 d (7)	4.75 d (2)
$CpFeW(CO)_6PH(N-i-Pr_2)$	159.8	363	9.9 d	3.4	1.3	4.6
$Cp_2FeMn(CO)_3PH(N-i-Pr_2)$	225.0	347	d	3.45 br	1.29 d (7)	4.57 s, 4.47 d (2)

 ${}^{a}s = singlet, d = doublet, br = broad, sp = septet; coupling constants in Hz are given in parentheses. {}^{b}Methoxy resonance. {}^{c}J(W-P) = 224$ Hz. Carbon-13 NMR in CDCl₃: δ 200.2 (d, J = 6 Hz, CO), δ 86.9 (s, C₅H₅), δ 48.5 (d, J = 6 Hz, CH), δ 21.7 (d, J = 17 Hz, CH₃). {}^{d}Paramagnetic impurities in solution prevented observation of this P-H resonance.

Preparation of CpFe(CO)₂PH(N-*i*-Pr₂)Mn(CO)₂Cp. A solution of NaFe(CO)₂Cp from 2.4 g (6.8 mmol) of $[CpFe(CO)_2]_2$ was allowed to react with 4.6 g (13.4 mmol) of *i*-Pr₂NP(H)ClMn(CO)₂Cp by the procedure outlined above for CpFe(CO)₂PH(N-*i*-Pr₂)Cr(CO)₅. A deep red solution was obtained when the dry residue from the evaporated reaction mixture was extracted with 500 mL of hexane. Concentration of the hexane extract under vacuum followed by cooling overnight in a -10 °C freezer gave 4.1 g (63% yield) of deep red air-stable CpFe(CO)₂PH(N-*i*-Pr₂)Mn(CO)₂Cp, mp 140 °C dec.

Preparation of CpFeM(CO)₆**PH(N**-*i*-**Pr**₂) (**M** = **Cr**, **W**). A solution of 1.0 g of CpFe(CO)₂PH(N-*i*-**Pr**₂)M(CO)₅ (**M** = Cr, **W**) in 200 mL of pentane was exposed to ultraviolet irradiation for 10 min. Removal of solvent from the deep brown filtered reaction mixture gave a black residue. Crystallization of this residue from pentane gave black air-stable CpFeM(CO)₆PH(N-*i*-**Pr**₂) in ~50% yield (Table I).

Preparation of Cp₂FeMn(CO)₃PH(N-i-Pr₂). A solution of 1.0 g (2.1 mmol) of CpFe(CO)₂PH(N-i-Pr₂)Mn(CO)₂Cp in 150 mL of cyclohexane was exposed to ultraviolet irradiation for 20 min. Solvent was removed from the resulting deep brown solution at 25 °C (25 mm). The residue was extracted with a 1:1 mixture of diethyl ether and pentane. The extract was concentrated under vacuum and cooled for several days in a -10 °C freezer to give 0.2 g (21% yield) of black air-stable crystalline Cp₂FeMn(CO)₃PH(N-i-Pr₂), mp 100 °C dec.

Reactions of CpFe(CO)₂PH(N-*i*-Pr₂)M(CO)₅ (M = Cr, Mo, W) with Hydrogen Halides. A solution of 0.5–2.5 g of the CpFe(CO)₂PH(N-*i*-Pr₂)M(CO)₅ derivative in 400 mL of pentane or hexane was treated with a stream of gaseous hydrogen chloride or hydrogen bromide for 10 min. Solvent was removed from the filtered reaction mixture at 25 °C (25 mm). Crystallization of the residue from pentane gave the CpFe-(CO)₂PHXM(CO)₅ derivative (Table I).

Methanolysis Reactions. (a) CpFe(CO)₂PHClCr(CO)₅. A solution of 0.6 g (1.38 mmol) of CpFe(CO)₂PHClCr(CO)₅ in 50 mL of methanol was boiled under reflux for 24 h. Removal of solvent at 25 °C (25 mm) followed by crystallization from pentane gave 0.5 g (84% yield) of yellow CpFe(CO)₂PH(OMe)Cr(CO)₅, mp 100 °C.

(b) $CpFe(CO)_2PHCIW(CO)_5$. A solution of 0.5 g (0.88 mmol) of $CpFe(CO)_2PHCIW(CO)_5$ in 30 mL of methanol was boiled under reflux for 24 h. Removal of solvent at 25 °C (25 mm) followed by crystallization from pentane gave 0.3 g (61% yield) of yellow $CpFe(CO)_2PH-(OMe)W(CO)_5$, mp 88-90 °C.

(c) $CpFe(CO)_2PH(N-i-Pr_2)Mn(CO)_2Cp$. A solution of 1.0 g (2.1 mmol) of $CpFe(CO)_2PH(N-i-Pr_2)Mn(CO)_2Cp$ in 30 mL of methanol was boiled under reflux for 24 h. Removal of solvent at 25 °C (25 mm) followed by crystallization from a 1:1 mixture of dichloromethane and hexane gave 0.5 g (57% yield) of red $CpFe(CO)_2PH(OMe)Mn(CO)_2Cp$.

X-ray Structure Determinations of CpFeM(CO)₆PH(N-*i*-Pr₂) (M = Cr and W). Small chunks cut from crystals of FeMC₁₇H₂₀O₆NP (M = Cr and W), crystallized from pentane, were sealed in capillaries and mounted on a Syntex P3 automated diffractometer located at Oklahoma State University. Unit cell dimensions (Table IV) were determined by least-squares refinement of the best angular positions for 15 independent reflections ($2\theta > 15^\circ$) during normal alignment procedures using molybdenum radiation ($\lambda = 0.71069$ Å). Data (5734 points for M = Cr and 5929 points for M = W) were collected at room temperature by using a variable scan rate, a θ -2 θ scan mode, and a scan width of 1.2°

Table IV. Crystal Data for $CpFeM(CO)_6PH(N-i-Pr_2)$ (M = Cr, W)

	M = Cr	M = W
formula	FeCrC ₁₇ H ₂₀ O ₆ NP	FeWC ₁₇ H ₂₀ O ₆ NP
mw	473.2	605.0
a, Å	14.362 (5)	14.491 (5)
b, Å	7.733 (2)	7.808 (2)
c, Å	19.244 (8)	19.456 (8)
β , deg	104.00 (3)	103.17 (3)
$V, Å^3$	2073.8 (12)	2143.6 (12)
F(000)	968	1168
μ (Mo K α), cm ⁻¹	13.16	62.56
λ (Mo K α), Å	0.71069	0.71069
$D_{\rm calcd}, \rm g \ cm^{-3}$	1.515	1.874
Z	4	4
no. of obsd reflens	2414	2271
octants colled	$\pm h, \pm k, \pm l$	$\pm h, \pm k, \pm l$
R/R_w	0.053/0.058	0.068/0.078
space group	$P2_1/c$	$P2_1/c$
cryst dimens, mm	$0.2 \times 0.2 \times 0.25$	$0.2 \times 0.15 \times 0.2$

below $K\alpha_1$ and 1.2° above $K\alpha_2$ to a maximum 2θ value of 116°. Backgrounds were measured at each side of the scan for a combined time equal to the total scan time. The intensities of three standard reflections were remeasured after every 97 reflectons, and since the intensities of these reflections showed less than 8% variation, corrections for decomposition were considered unnecessary. Data were corrected for Lorentz, polarization, and background effects. No correction was made for absorption. After removal of redundant and space group forbidden data 2414 and 2271 reflections were considered observed $[I > 3.0\sigma(I)]$ for M = Cr and W, respectively. The structures were solved for heavy-atom positions by direct methods using MULTAN 80. Successive leastsquares/difference Fourier cycles allowed location of the non-hydrogen atoms. Refinement of scale factor, positional, and anisotropic thermal parameters for all non-hydrogen atoms was carried out to convergence. Hydrogen positional parameters were determined from a difference Fourier synthesis of CpFeCr(CO)₆PH(N-i-Pr₂). For CpFeW(CO)₆PH-(N-i-Pr2), the hydrogen atom HP1 was located from a difference Fourier synthesis and all other hydrogen positions were calculated. The hydrogen atoms were assigned isotropic thermal parameters of U = 0.03. All parameters associated with hydrogen atoms were held invariant. The final cycle of refinement [function minimized $\sum (|F_0| - |F_0|)^2$] led to a final agreement factor R = 5.3% for M = Cr and 6.8% for M = W where $R = (\sum_{i=1}^{n} ||F_0| - |F_c|| / \sum_{i=1}^{n} |F_0|| \times 100$. Anomalous scattering corrections were made for Fe, Cr, and P for CpFeCr(CO)₆PH(N-i-Pr₂) and for Fe, W, and P for CpFeW(CO)₆PH(N-i-Pr₂). Scattering factors were taken from Cromer and Mann.⁸ In the final stages of refinement, a weight equal to $1/\sigma(F)$ was introduced.

Tables V and VI give the positional parameters and the bond distances and angles for $CpFeCr(CO)_6PH(N-i-Pr_2)$. Tables VII and VIII give the positional parameters and the bond distances and angles for CpFeW-

⁽⁸⁾ Cromer, D. T.; Mann, I. B. Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 1968, A24, 321.

Table V. Positional Parameters for $CpFeCr(CO)_6P(H)(N-i-Pr_2)$

atom	$x(\sigma(x))$	$y(\sigma(y))$	$z(\sigma(z))$
Cr1	0.3399 (1)	0.2399 (2)	0.1095 (1)
Fel	0.1546(1)	0.1239(1)	0.1450 (1)
P1	0.2606 (1)	0.0761(2)	0.0428(1)
CI	0.2000(1) 0.1402(7)	-0.0294(12)	0.2392 (5)
C_{2}	0.1402(7)	-0.1359(11)	0.2372(3)
	0.1011(0)	-0.1103(12)	0.1703(3) 0.1424(4)
	0.0037(7)	-0.1193(12)	0.1424(4)
C4 C5	0.0231(7)	0.0025(13)	0.1800(0)
C3	0.0508(5)	0.0343(13)	0.2393(3)
010	0.2269(5)	0.2939(11)	0.1924(4)
010	0.2002(4)	0.3798(8)	0.2430(3)
	0.3/32(6)	0.0322(12)	0.1515(4)
011	0.3949(5)	-0.0860 (10)	0.1/80 (4)
C12	0.4097 (7)	0.3574 (14)	0.1652 (5)
012	0.4500 (6)	0.4284 (13)	0.2006 (4)
C13	0.3122 (6)	0.4552 (11)	0.0737 (4)
O13	0.2969 (5)	0.5897 (8)	0.0546 (4)
C14	0.4471 (6)	0.2232 (12)	0.0314 (5)
O 14	0.5095 (5)	0.2155 (11)	-0.0175 (4)
C20	0.0997 (6)	0.3001 (11)	0.1150 (4)
O20	0.0607 (5)	0.4180 (9)	0.0981 (3)
N2	0.2450 (4)	0.1144 (8)	-0.0389 (3)
C40	0.2491 (6)	-0.0222 (10)	-0.0929 (4)
C41	0.3480 (7)	-0.1055 (14)	-0.1169 (5)
C42	0.1724 (7)	-0.1547 (11)	-0.0699 (5)
C50	0.2247 (6)	0.2908 (9)	-0.0592 (4)
C51	0.1285 (6)	0.3063 (12)	-0.0782 (5)
C52	0.3036 (7)	0.3622 (12)	-0.1177 (5)
HP1	0.2756	-0.0691	0.0376
H1	0.1975	-0.0811	0.2597
H2	0.2348	-0.1990	0.1671
H3	0.0963	-0.1721	0.0915
H4	-0.0335	-0.0312	0.1465
H5	0.0191	0.0928	0.2801
H40	0.2431	0.0317	-0.1424
H411	0.3977	-0.0056	-0.1486
H412	0.3660	-0.1413	-0.0810
H413	0.3058	-0.1411	-0.1507
H421	0.1090	_0.2510	_0.0313
H422	0.1160	_0.1088	_0.0313
LI422	0.1463	-0.1000	-0.0931
H50	0.1403	0.2214	-0.0831
H30 H511	0.2327	0.3723	-0.0197
1512	0.0785	0.2709	-0.0447
H312	0.1333	0.2300	-0.1343
FIJI3	0.1003	0.4098	-0.0013
H321	0.3088	0.30/9	-0.1821
H522	0.3037	0.4950	-0.1314
H523	0.3215	0.3020	-0.1580

Figure 1. ORTEP diagram of $CpFeCr(CO)_6PH(N-i-Pr_2)$.

 $(CO)_6PH(N\mathchar`left Pr_2).$ The structures of $CpFeCr(CO)_6PH(N\mathchar`left Pr_2)$ and $CpFeW(CO)_6PH(N\mathchar`left Pr_2)$ are depicted in Figures 1 and 2, respectively.

Results and Discussion

The reactions of i-Pr₂NP(H)XM(CO)₅ (X = Br, M = Cr; X = Cl, M = Mo, W) and i-Pr₂NP(H)ClMn(CO)₂Cp with the very

Table VI.	Bond Distance	s (Å) and	Angles	(deg)	for
CpFeCr(C	$O_{6}P(H)(N-i-F)$	r ₂)	-		

$\begin{array}{c} Fe1-Cr1 \\ Fe1-C1 \\ Fe1-C2 \\ Fe1-C3 \\ Fe1-C4 \\ Fe1-C5 \\ Fe1-C10 \\ Fe1-P1 \\ Fe1-C20 \\ Cr1-C10 \\ Cr1-C10 \\ Cr1-C11 \\ Cr1-C12 \\ Cr1-C13 \\ Cr1-C14 \\ Cr1-P1 \\ C10-O10 \\ C11-O11 \\ \hline Cr1-Fe1-P1 \\ Cr1-Fe1-C10 \\ Cr1-Fe1-C10 \\ Cr1-Fe1-C10 \\ Cr1-Fe1-C10 \\ Cr1-Fe1-C20 \\ \hline \end{array}$	2.733 (2) 2.133 (9) 2.118 (9) 2.105 (10) 2.070 (10) 2.076 (9) 2.023 (9) 2.207 (2) 1.741 (9) 2.023 (7) 1.910 (9) 1.870 (11) 1.880 (9) 1.879 (8) 2.292 (2) 1.173 (10) 1.127 (12) 54.01 (6) 47.5 (2) 98.7 (3)	C12-O12 C13-O13 C14-O14 C20-O20 C1-C2 C2-C3 C3-C4 C4-C5 C5-C1 P1-N1 N1-C40 N1-C50 C40-C41 C40-C41 C40-C42 C50-C51 C50-C52 P1-Cr1-C14 Fe1-C10-Cr1 Fe1-P1-Cr1	1.157 (11) 1.142 (11) 1.133 (10) 1.136 (14) 1.40 (1) 1.38 (1) 1.41 (1) 1.41 (1) 1.40 (2) 1.36 (2) 1.668 (6) 1.473 (10) 1.526 (13) 1.491 (12) 1.517 (13) 1.495 (11) 86.3 (3) 85.0 (3) 74.80 (7)
P1-Fe1-C10	101.0 (2)	Fe1-C10-O10	130.3 (6)
C_{10} -Fe1-C20 C10-Fe1-C20 Fe1-C10	96.0 (2) 87.9 (4) 47.5 (2)	Fe1-P1-N1	144.6(6) 126.1(2) 128.9(2)
Fel-Cr1-Cl1 $Fel-Cr1-Cl2$	87.0 (2) 129.8 (3)	Fe1-C20-O20	177.0 (7)
Fel-Crl-Cl3	95.9 (2)	Cr1-C12-O12	178.1 (8)
Fel-Cr1-Pl	51.59 (6)	Cr1-C14-O14	177.2 (9)
C10-Cr1-C11 C10-Cr1-C12	94.4 (3) 83.6 (4)	P1-N1-C40 P1-N1-C50	123.1 (5) 119.8 (5)
C10-Cr1-C13 C10-Cr1-C14	84.6 (3) 172.0 (4)	N1-C40-C41 N1-C40-C42	113.0 (8) 112.5 (6)
C11-Cr1-C12 C11-Cr1-C13	86.7 (4) 175.0 (4)	C41-C40-C42 N1-C50-C51	111.5 (7) 112.9 (6)
C11-Cr1-C14 C12-Cr1-C13	92.2 (4) 88.3 (4)	N1-C50-C52 C51-C50-C52	112.4 (6)
C12-Cr1-C14	92.4 (4) 88 4 (4)	C1-C2-C3 C2-C3-C4	109.3 (8)
P1-Cr1-C10	98.2 (2)	C3-C4-C5	107.4 (8)
P1-Cr1-C11 P1-Cr1-C12 P1-Cr1-C13	88.9 (3) 175.4 (4) 96.1 (3)	C4-C5-C1 C5-C1-C2	109.8 (9) 106.9 (9)

Figure 2. ORTEP diagram of CpFeW(CO)₆PH(N-*i*-Pr₂).

nucleophilic⁵ metal carbonyl anion $CpFe(CO)_2^-$ proceed smoothly in tetrahydrofuran with replacement of the halogen atom by a $CpFe(CO)_2$ group according to the equations

$$i$$
-Pr₂NP(H)XM(CO)₅ + NaFe(CO)₂Cp \rightarrow
CpFe(CO)₂PH(N- i -Pr₂)M(CO)₅ + NaX (2a)

i-Pr₂NP(H)ClMn(CO)₂Cp + NaFe(CO)₂Cp \rightarrow CpFe(CO)₂PH(N-*i*-Pr₂)Mn(CO)₂Cp + NaCl (2b)

Table VII. Positional Parameters for $CpFeW(CO)_6P(H)(N-i-Pr_2)$

atom	$x (\sigma(x))$	$y(\sigma(y))$	$z (\sigma(z))$
W	0.1570(1)	0.2592 (1)	0.1130 (0)
Fe1	0.3458 (2)	0.3805 (4)	0.1464 (2)
P 1	0.2456 (4)	0.4281(7)	0.0449 (3)
C1	0.3614(25)	0.5278 (25)	0.2399(13)
C2	0.3387(22)	0.6344(32)	0.1819 (15)
C3	0.4117(27)	0.6168 (45)	0.1456(17)
Č4	0.4759 (21)	0.5028 (48)	0.1782(21)
C5	0.4452(26)	0.4420(37)	0.2391(15)
C10	0.2698 (18)	0.2075 (28)	0.1967(14)
010	0.3055(14)	0.1255(25)	0 2485 (9)
Cli	0.1197(22)	0.4811(43)	0.1556(13)
011	0.1013(18)	0.6058(31)	0 1799 (13)
C12	0.0778(23)	0.1422(42)	0.1663(21)
012	0.0322(23)	0.0670(37)	0.2012(16)
C13	0.1922(18)	0.0286 (35)	0.0738(13)
013	0.1122(10) 0.2114(17)	-0.1003(23)	0.0544(12)
C14	0.0450(17)	0.1005(25) 0.2764(37)	0.0379(12)
014	-0.0172(15)	0.2704(37) 0.2813(36)	-0.0170(12)
C20	0.3996(17)	0.2013(30)	0.0170(12)
020	0.3990(17) 0.4392(15)	0.2054(35) 0.0851(27)	0.1022(10)
N1	0.4572(15) 0.2630(15)	0.3858(22)	-0.0346(9)
C40	0.2630(13)	0.5050(22) 0.5214(28)	-0.0886(12)
C41	0.2021(20)	0.5214(20) 0.6048(37)	-0.1127(14)
C42	0.3398(23)	0.6525(35)	-0.0662(15)
C50	0.3390(23)	0.0020(39)	-0.0547(11)
C51	0.2043(10) 0.3773(21)	0.2007(27)	-0.0718(14)
C52	0.2027(20)	0.1417(33)	-0.1111 (13)
HI	0.3230	0.5139	0.2764
H2	0.2803	0.7092	0.1680
HI	0.4156	0.6817	0.1019
H4	0 5347	0.4685	0 1629
HS	0 4787	0.3585	0 2745
HPI	0.2322	0.6191	0.0299
H40	0.2700	0.4664	-0.1336
H411	0.1461	0.6589	-0.0723
H412	0.1154	0.5178	-0.1316
H413	0.1605	0.6919	-0.1493
H421	0.4042	0.5955	-0.0561
H422	0.3355	0.7092	-0.0224
H423	0.3424	0.7407	-0 1014
H50	0.2843	0.1316	-0.0150
H511	0.4279	0.2293	-0.0318
H512	0.3802	0.2699	-0.1118
H513	0.3931	0.0786	-0.0854
H521	0.1910	0.2155	-0.1536
H522	0.1429	0.1414	-0.0945
H523	0.2138	0.0260	-0.1256

These reactions appear to proceed cleanly with a minimum of side reactions so that pure products can be isolated from the reaction mixtures by crystallization from pentane or hexane without the need for chromatography. The high nucleophilicity of $CpFe(CO)_2^{-}$ seems to be an important requirement for the success of this preparation since reactions of i-Pr₂NP(H)ClM- $(CO)_5$ (M = Cr, W) with the much less nucleophilic⁵ CpW(CO)₃ failed to give analogous products under similar conditions. Similar observations were made many years ago in connection with reactions of metal carbonyl anions with polyfluoroarenes⁹ and with chlorosilanes¹⁰ in tetrahydrofuran where only highly nucleophilic metal carbonyl anions such as $CpFe(CO)_2^-$ give significant yields of the expected substitution products. Also, the reaction of i- $Pr_2NP(H)ClFe(CO)_4$ with NaFe(CO)₂Cp under conditions similar to those used for the other reactions of $NaFe(CO)_2Cp$ failed to give any evidence for the formation of significant quantities of a crystalline bimetallic product.

These heterobimetallic products are deep orange (Fe/Cr, Fe/Mo, Fe/W) to deep red (Fe/Mn) solids that are soluble in nonpolar and polar organic solvents and apparently very stable toward atmospheric oxygen and moisture. Their spectroscopic properties are in accord with structures I and II, in which the phosphorus atom is bonded to four different elements: hydrogen,

nitrogen, and two different transition metals. Thus, their infrared ν (CO) spectra (Table II) exhibit frequencies assignable to both the $CpFe(CO)_2$ and $M(CO)_5$ or $CpMn(CO)_2$ units in structures I and II, respectively. For example, in CpFe(CO)₂PH(N-i- Pr_2)Cr(CO)₅ (I: M = Cr) the strong ν (CO) frequencies at 1970 and 1920 cm⁻¹ can be assigned to the CpFe(CO)₂ unit and the remaining ν (CO) frequencies at 2040, 2005, 1955, and 1935 cm⁻¹ can be assigned to the A_1 , B_1 , A_1 , and E frequencies of the Cr-(CO)₅ unit on the basis of their positions and relative intensities. Note that the very low symmetry of the CpFe(CO)₂PH(N-i-Pr₂) ligand leads to an infrared-active B_1 frequency in contrast to the infrared *inactivity* of this frequency expected^{11,12} for ideal $C_{4\nu}$ symmetry in an LM(CO)₅ derivative. The infrared spectrum of CpFe(CO)₂PH(N-*i*-Pr₂)Mn(CO)₂Cp (II) exhibits four terminal $\nu(CO)$ frequencies, two for the CpFe(CO)₂ unit and two for the $CpMn(CO)_2$ unit. The proton NMR spectra of I and II (Table III) exhibit the expected resonances for the PH, C₅H₅, CH, and CH₃ groups. The $|^{1}J(P-H)|$ coupling constants decrease by 80-90 Hz when an i-Pr₂NP(H)X metal carbonyl complex is converted to the corresponding i-Pr₂NP(H)Fe(CO)₂Cp metal carbonyl complex (I and II) by reaction with NaFe(CO)₂Cp. The proton NMR P-H chemical shifts (Table III) change relatively little in going from an $(i-Pr_2N)_2PH$ metal carbonyl complex to the corresponding i-Pr₂NP(H)Fe(CO)₂Cp metal carbonyl complex. The phosphorus-31 NMR chemical shifts (measured as δ values downfield from 85% H₃PO₄) of *i*-Pr₂NP(H)X complexes of the same metal carbonyl system (Table III) decrease in the sequence i-Pr₂NP(H)Cl > i-Pr₂NP(H)Br > (i-Pr₂N)₂PH >

i-Pr₂NP(H)Fe(CO)₂Cp

The upfield phosphorus-31 NMR chemical shift in going from an $(i-Pr_2N)_2PH$ metal carbonyl complex to the corresponding $i-Pr_2NP(H)Fe(CO)_2Cp$ metal carbonyl complex is 25-40 ppm (Table III).

The most important chemical property of the complexes $CpFe(CO)_2PH(N-i-Pr_2)M(CO)_5$ (I: M = Cr, W) and $CpFe(CO)_2PH(N-i-Pr_2)Mn(CO)_2Cp$ (II) is their facile photochemical decarbonylation in hydrocarbon solvents to give $CpFeM(CO)_6PH(N-i-Pr_2)$ (M = Cr, W) and $Cp_2FeMn(CO)_3PH(N-i-Pr_2)$, respectively. Structural studies by X-ray diffraction indicate $CpFeM(CO)_6PH(N-i-Pr_2)$ to have structure III (M = Cr, W).

A related structure, IV, is suggested for Cp₂FeMn(CO)₃PH(N*i*-Pr₂) on the basis of its infrared spectrum in the ν (CO) region (Table II), which exhibits two fairly strong terminal ν (CO) frequencies at 1947 and 1889 cm⁻¹ and a single bridging ν (CO) frequency at 1758 cm⁻¹.

The complexes CpFeM(CO)₆PH(N-*i*-Pr₂) (M = Cr, W) were found to be isomorphous, forming monoclinic crystals of the space group $P2_1/c$ with Z = 4. Least-squares refinement (Table IV) as indicated in the Experimental Section yields the structures (III:

⁽⁹⁾ King, R. B.; Bisnette, M. B. J. Organomet. Chem. 1964, 2, 38.

⁽¹⁰⁾ Curtis, M. D. Inorg. Chem. 1972, 11, 802.

⁽¹¹⁾ Cotton, F. A.; Kraihanzel, C. S. J. Am. Chem. Soc. 1962, 84, 4432.
(12) Wilford, J. B.; Stone, F. G. A. Inorg. Chem. 1965, 4, 389.

Table VIII. Bond Distances (Å) and Angles (deg) for $CpFeW(CO)_6P(H)(N-i-Pr_2)$

$\begin{array}{cccc} -012 & 1.20 & (5) \\ -013 & 1.13 & (3) \\ -014 & 1.16 & (3) \\ -020 & 1.16 & (3) \\ C2 & 1.38 & (4) \\ C3 & 1.41 & (5) \\ C4 & 1.34 & (5) \\ C5 & 1.44 & (5) \\ C5 & 1.44 & (5) \\ C1 & 1.39 & (5) \\ N1 & 1.65 & (2) \\ C40 & 1.49 & (3) \\ -C41 & 1.53 & (4) \\ -C42 & 1.51 & (4) \\ -C51 & 1.46 & (4) \\ -C52 & 1.51 & (3) \end{array}$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2) 3) 7)
	50-C52 110 (2) 250-C52 114 (2) 2-C3 107 (3) 3-C4 110 (3) 4-C5 107 (3) 5-C1 107 (2) 1-C2 109 (3)

M = Cr, W) depicted in Figures 1 and 2 for the chromium and tungsten complexes, respectively. In these structures, the iron atom is bonded to a terminal carbonyl group and a η^5 -cyclopentadienyl ring and the group 6 metal M is bonded to four terminal carbonyl groups. The iron and group 6 metals are within bonding distance (Fe–Cr = 2.733 (2) Å in CpFeCr(CO)₆PH(N-*i*-Pr₂) and Fe–W = 2.827 (4) Å in CpFeW(CO)₆PH(N-*i*-Pr₂)). These metal-metal bonds are bridged by a carbonyl group (Fe-C = 2.023 (9) Å, Cr-C = 2.023 (7) Å in CpFeCr(CO)₆PH(N-*i*-Pr₂) and Fe-C = 2.12 (3) Å, W–C = 2.07 (2) Å in CpFeW(CO)₆PH(N-*i*-Pr₂)) and an *i*-Pr₂NPH phosphido group (Fe-P = 2.207 (2) Å, Cr-P = 2.292(2) Å in CpFeCr(CO)₆PH(N-*i*-Pr₂) and Fe-P = 2.201 (5) Å, W-P = 2.433 (6) Å in CpFeW(CO)₆PH(N-*i*-Pr₂)). The bridging phosphido group is unsymmetrical, but the bridging carbonyl group is symmetrical within experimental error despite the dissimilarity of the metal atoms being bridged.

The spectroscopic properties of the three heterobimetallic complexes $CpFeM(CO)_6PH(N-i-Pr_2)$ (III: M = Cr, W) and $Cp_2FeMn(CO)_3PH(N-i-Pr_2)$ (IV) are in accord with the observed (III) and proposed (IV) structures, respectively. The infrared spectra of all three of these complexes (Table II) exhibit a single bridging $\nu(CO)$ frequency in addition to the expected number of terminal $\nu(CO)$ frequencies, but the bridging $\nu(CO)$ frequency in $CpFeW(CO)_6PH(N-i-Pr_2)$ in contrast to that in its chromium analogue is so weak that it was only identified after the structure determination was completed. Replacement of three carbonyl groups in $CpFeM(CO)_6PH(N-i-Pr_2)$ (III: M = Cr, W) with a cyclopentadienyl ring to give $Cp_2FeMn(CO)_3PH(N-i-Pr_2)$ (IV) with the necessary adjustment in the non-iron transition metal

lowers the bridging $\nu(CO)$ frequency by about 60 cm⁻¹ (1810 \rightarrow 1758 cm⁻¹), in accord with the weaker π -acceptor strength of a cyclopentadienyl ring relative to three carbonyl groups. Substantial changes occur in various NMR parameters (Table III) upon decarbonylation of I to III and II to IV with heteronuclear metal-metal bond formation leading to a FePM three-membered ring. Most dramatic is the 125-155 ppm downfield phosphorus-31 NMR chemical shift, which clearly appears to be a consequence of ring formation. Also significant are a 40-75 Hz increase in the $|^{1}J(P-H)|$ coupling constant and a ~2-ppm downfield proton NMR chemical shift of the P-H hydrogen.

One of the interesting features of the heterobimetallic μ phosphido compounds described in this paper is the presence of potentially reactive phosphorus-nitrogen bonds, in contrast to previously reported dialkylphosphido and diarylphosphido heterobimetallic derivatives such as $MnFe(\mu-PPh_2)(CO)_{8,6}$ $CpNiFe(CO)_{3}(\mu-CO)(\mu-PPh_{2}),^{6}WRe(\mu-PMe_{2})(CO)_{10},^{13}WRe$ $(\mu-PPh_2)(CO)_{9}^{14}$ WIrH $(\mu-PPh_2)_2(CO)_5(PPh_3)^{15}$ (OC)₄Mn $(\mu-PPh_2)_2(PPh_3)^{15}$ (OC)₄Mn $(\mu-PPh_2)_2(PPh_3)^{15}$ (OC)₄Mn $(\mu-PPh_2)_2(PPh_3)^{15}$ (OC)₄Mn $(\mu-PPh_2)_2(PPh_3)^{15}$ (OC)₄Mn $(\mu-PPh_2)^{15}$ (OC)₄Mn $(\mu-PPh_2)^{15$ PR_2)(μ -H)Mo(CO)₂Cp (R = p-tolyl),¹⁶ and Cp₂ZrW(μ - $PPh_2)_2(CO)_4$,¹⁷ which contain only relatively unreactive phosphorus-carbon bonds in addition to the phosphorus-transitionmetal bonds. One feature of phosphorus-nitrogen bonds that has been exploited in the previous papers of this series^{1,4} is their facile cleavage with hydrogen halides to give the corresponding phosphorus-halogen compounds. In this connection the complexes $CpFe(CO)_2PH(N-i-Pr_2)M(CO)_5$ (I: M = Cr, Mo, W) react readily with the hydrogen halides HX (X = Cl, Br) in hydrocarbon solvents to give the corresponding $CpFe(CO)_2PHXM(CO)_5$ derivatives (V)

according to the equation

 $CpFe(CO)_2PH(N-i-Pr_2)M(CO)_5 + 2HX \rightarrow$

 $CpFe(CO)_2PHXM(CO)_5 + [i-Pr_2NH_2]X$ (3)

The CpFe(CO)₂PHXM(CO)₅ derivatives (V) are orange to brown, air- and moisture-sensitive crystalline solids that are soluble in both nonplanar and polar organic solvents. Their infrared ν (CO) spectra (Table II) resemble those of their CpFe- $(CO)_2PH(N-i-Pr_2)M(CO)_5$ precursors (I), but corresponding bands are shifted to higher frequencies by up to 30 cm⁻¹, in accord with the expected effect upon replacement of a dialkylamino group on phosphorus with a halogen atom. The phosphorus-31 NMR chemical shifts move downfield by 60-82 ppm and by 80-107 ppm as the diisopropylamino group is replaced by bromine and by chlorine, respectively, with the shifts being larger in the sequence W < Mo < Cr. The proton P-H NMR chemical shifts move downfield by about 0.6-0.75 ppm as the diisopropylamino group is replaced by bromine but move upfield by 0.15-0.2 ppm as the diisopropylamino group is replaced by chlorine.

The conversion of $CpFe(CO)_2PH(N-i-Pr_2)M(CO)_5$ (I) to CpFe(CO)₂PHXM(CO)₅ (V) with the hydrogen halides, HX, represents the final step of the synthetic sequence

$$(i-\Pr_{2}N)_{2}PHM(CO)_{5} \rightarrow i-\Pr_{2}NP(H)XM(CO)_{5} \rightarrow CpFe(CO)_{2}PH(N-i-\Pr_{2})M(CO)_{5} (I) \rightarrow CpFe(CO)_{2}PHXM(CO)_{5} (V) (4)$$

This synthetic sequence shows how the two diisopropylamino groups in (i-Pr₂N)₂PH metal carbonyl complexes⁴ can be replaced

- Ehrl, W.; Vahrenkamp, H. Chem. Ber. 1971, 104, 3261. (13)
- (14) Mercer, W. C.; Whittle, R. R.; Burkhardt, E. W.; Geoffroy, G. L. Organometallics 1985, 4, 68.
- (15) Breen, M. J.; Geoffroy, G. L.; Rheingold, A. L.; Fultz, W. C. J. Am. Chem. Soc. 1983, 105, 1069.
- Casey, C. P.; Bullock, R. M. Organometallics 1984, 3, 1100. Targos, T. S.; Rosen, R. P.; Whittle, R. R.; Geoffroy, G. L. Inorg. (17)Chem. 1985, 24, 1375.

stepwise by the other groups of interest and suggests potential synthetic applications of these systems in organophosphorus coordination chemistry.

Some methanolysis reactions were also investigated. Thus, treatment of $CpFe(CO)_2PHClM(CO)_5$ (M = Cr, W) with boiling methanol gives the corresponding CpFe(CO)₂PH(OMe)M(CO)₅ derivatives, VI. A manganese analogue, CpFe(CO)₂PH-

(OMe)Mn(CO)₂Cp (VII), was prepared directly from CpFe- $(CO)_2PH(N-i-Pr_2)Mn(CO)_2Cp$ by heating in boiling methanol. The patterns of the $\nu(CO)$ frequencies of these methoxy derivatives (Table II) resemble those of the analogous diisopropylamino and halo derivatives. The proton NMR spectra of these methoxy derivatives exhibit the expected doublet OCH₃ resonances around

 δ 3.5-3.6 (J = 12-13 Hz) in addition to the PH and C₅H₅ resonances

Acknowledgment. We are indebted to the Air Force Office of Scientific Research for partial support of this work under Grant AFOSR-84-0050.

Registry No. CpFe(CO)₂PH(N-*i*-Pr₂)Cr(CO)₅, 97825-67-7; CpFe-(CO)₂PH(N-*i*-Pr₂)Mo(CO)₅, 97825-68-8; CpFe(CO)₂PH(N-*i*-Pr₂)W-(CO)₅, 97825-69-9; NaFe(CO)₂Cp, 12152-20-4; [CpFe(CO)₂]₂, 12154-95-9; *i*-Pr₂NP(H)BrCr(CO)₅, 102283-12-5; *i*-Pr₂NP(H)ClMo(CO)₅, 102260-82-2; *i*-Pr₂NP(H)ClW(CO)₅, 102260-83-3; CpFe(CO)₂PH(Ni-Pr₂)Mn(CO)₂Cp, 97825-75-7; i-Pr₂NP(H)ClMn(CO)₂Cp, 102260-84-4; CpFeCr(CO)₆PH(N-i-Pr₂), 102260-85-5; CpFeW(CO)₆PH(N-i-Pr₂), 102260-86-6; Cp₂FeMn(CO)₃PH(N-*i*-Pr₂), 97825-76-8; CpFe-(CO)₂PHClCr(CO)₅, 102260-87-7; CpFe(CO)₂PHBrCr(CO)₅, 102260-88-8; CpFe(CO)₂PHClMo(CO)₅, 102260-89-9; CpFe(CO)₂PHBrMo-(CO)₅, 102260-90-2; CpFe(CO)₂PHClW(CO)₅, 102260-91-3; CpFe-(CO)₂PHBrW(CO)₅, 97825-71-3; CpFe(CO)₂PH(OMe)Cr(CO)₅, 102260-92-4; CpFe(CO)₂PH(OMe)W(CO)₅, 102260-93-5; CpFe-(CO)₂PH(OMe)Mn(CO)₂Cp, 102260-94-6; Fe, 7439-89-6; W, 7440-33-7; Cr, 7440-47-3; Mn, 7439-96-5; Mo, 7439-98-7.

Supplementary Material Available: Listings of anisotropic thermal parameters (2 pages). Ordering information is given on any current masthead page.

Contribution from the Lehrstuhl für Anorganische Chemie I der Ruhr-Universität, D-4630 Bochum, Federal Republic of Germany, and Anorganisch-Chemisches Institut der Universität, D-6900 Heidelberg, Federal Republic of Germany

Electron-Transfer Barriers in Cobalt(III) and Cobalt(II) Bis Complexes of 1,4,7-Triazacyclononane (tacn) and 1,4,7-Trithiacyclononane (ttcn). Crystal Structures of $[Co^{II}(tacn)_2]I_2 \cdot 2H_2O$ and of $[Co^{III}(ttcn)_2](ClO_4)_3$

Heinz-Josef Küppers,^{1a} Ademir Neves,^{1a} Christa Pomp,^{1a} Dirk Ventur,^{1a} Karl Wieghardt,^{*1a} Bernhard Nuber,^{1b} and Johannes Weiss^{1b}

Received November 26, 1985

The structures of $[Co(tacn)_2]I_2 \cdot 2H_2O$ and of $[Co(ttcn)_2](ClO_4)_3$ have been determined, where tacn is 1,4,7-triazacyclononane $(C_6H_{15}N_3)$ and tten is 1,4,7-trithiacyclononane $(C_6H_{12}S_3)$. The cobalt(II) complex crystallizes in the orthorhombic crystal system, space group Ibca (D_{2k}^{2k}) , with a = 13.60 (2) Å, b = 15.43 (1) Å, c = 20.81 (2) Å, and Z = 8. The structure was refined to a conventional R value of 0.067. The coordination sphere consists of six nitrogen atoms of two tacn ligands in a distorted octahedral arrangement about the cobalt(II). The average Co-N distance is 2.155 Å. The cobalt(III) complex crystallizes in the monoclinic crystal system, space group C_2/c (C_{2h}^6), with a = 12.194 (3) Å, b = 15.146 (4) Å, c = 13.418 (3) Å, $\beta = 94.42$ (2)°, and Z = 12.194 (3) Å, $\beta = 12.194$ (3) Å, $\beta = 12.194$ (3) Å, $\beta = 12.194$ (3) Å, $\beta = 13.418$ (3) Å, $\beta = 13.418$ (3) Å, $\beta = 12.194$ (3) Å, $\beta = 12.194$ (3) Å, $\beta = 13.418$ (3) Å, $\beta = 13.$ 4. The structure was refined to R = 0.0395. The coordination sphere consists of six sulfur atoms of two ttcn ligands in a nearly regular octahedral arrangement about the cobalt(III). The average Co-S distance is 2.253 Å. The electron-exchange rate constant for the reaction of $[((R)-Metacn)Co(tacn)]^{2+}$ and $[((S)-Metacn)Co(tacn)]^{3+}$ has been determined $(k_{ex} = 0.19 \text{ M}^{-1} \text{ s}^{-1} \text{ at } 25 \text{ °C};$ $I = 0.1 \text{ M} (\text{LiClO}_4))$. The corresponding rate constant for the couple $[\text{Co}(ttcn)_2]^{3+/2+}$ has been evaluated to be $1.3 \times 10^4 \text{ M}^{-1}$ s^{-1} at 25 °C (I = 0.2 M) from the cross-reaction between $[Co(ttcn)_2]^{3+}$ and $[Co(phen)_3]^{2+}$. The redox reactivities of $[Co-(ttcn)_2]^{3+/2+}$ and $[Co(ttcn)_2]^{3+/2+}$ have been analyzed in the frame of the Marcus-Sutin model for outer-sphere electron-transfer reactions.

Introduction

In the past 5 years a variety of complexes of first transition series metals containing two tridentate macrocyclic ligands such as 1,4,7-triazacyclononane (tacn) have been synthesized and have in many instances been characterized spectroscopically and crystallographically. The most remarkable property of these complexes is their pronounced stability in aqueous solution toward ligand dissociation. Thus, $[Ni(tacn)_2]^{2+2}$ and $[Ni(tacn)_2]^{3+,3,4}$ $[Fe(tacn)_2]^{2+3,5}$ and $[Fe(tacn)_2]^{3+,3,5}$ and $[Co(tacn)_2]^{2+3}$ and

 $[Co(tacn)_2]^{3+6}$ have been synthesized. The Ni^{2,7} and Fe⁵ pairs have been studied by X-ray crystallography, and metrical information concerning the metal-ligand distances is available. It is the change of these distances in changing the oxidation state of the central metal ion that governs the redox reactivity of these complexes. Electron-transfer rates are currently successfully analyzed by using a semiclassical model developed by Marcus and Sutin.8-10

^{(1) (}a) Ruhr-Universität Bochum. (b) Universität Heidelberg

 ⁽a) Yang, R.; Zompa, L. J. Inorg. Chem. 1976, 15, 1499. (b) Zompa, L. J.; Margulis, T. N. Inorg. Chim. acta 1978, 28, L157.
 (3) Wieghardt, K.; Schmidt, W.; Herrmann, W.; Küppers, H. J. Inorg. Chem. 1983, 22, 2953.

⁽⁴⁾ McAuley, A.; Norman, P. R.; Olubuyide, O. Inorg. Chem. 1984, 23, 1939; J. Chem. Soc., Dalton Trans 1984, 1501.

⁽⁵⁾ Boeyens, J. C. A.; Forbes, A. G. S.; Hancock, R. D.; Wieghardt, K. Inorg. Chem. 1985, 24, 2926.

<sup>Koyama, H.; Yoshino, T. Bull. Chem. Soc. Jpn. 1972, 45, 481.
Wieghardt, K.; Walz, W.; Nuber, B.; Weiss, J.; Ozarowski, A.; Stratemeier, H.; Reinen, D. Inorg. Chem., in press.
Sutin, N. Acc. Chem. Res. 1982, 15, 275. Sutin, N. Prog. Inorg. Chem.</sup> (7) (8)

^{1983, 30, 441}

Brunschwig, B. S.; Logan, J.; Newton, M. D.; Sutin, N. J. Am. Chem. (9)Soc. 1980, 102, 5789